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1. Introduction

Superstrings in anti-de Sitter (AdS) spaces have important feature that those have con-
formal field theory duals. Recently it has been discussed that the heterotic string theory
in AdS3 space has the dual heterotic nonlinear superconformal algebras [l]. There are
many studies on the AdS/CFT correspondence for the type II superstring theories whose
worldsheet actions are known such as the ¢ models given in [B]. The pp-wave limit of
the worldsheet type II superstring action allows the lightcone quantization [J]. Further
generalization [ leads to the integrable property of the system which became one of the
guiding principles to explore the AdS/CFT correspondence. On the other hand few studies
on the ones for a heterotic string have been done where an worldsheet action of a heterotic
string in AdS space is not known so far.

The heterotic string is a combination of a chiral bosonic string and a chiral superstring.
A chiral superstring in flat space is well described by the Neveu-Schwarz-Ramond formu-
lation, but it is difficult to describe spacetime supersymmetry in curved space because of
the lack of the spacetime fermions. A superstring in curved space is well described by the
Green-Schwarz formulation, but it is difficult to separate chiral right/left-moving modes
for the worldsheet superconformal theory. There are several formulations of a chiral super-
string in AdS space where chiral spacetime fermions make both spacetime supersymmetry
and right/left separation manifest from the beginning such as the supergroup covariant o
models [fJ-F. In these formulations the existence of the kinetic term for those fermions



avoids the x symmetry, and the worldsheet conformal field theory technique is available
for the quantum computation. The x symmetry is an inevitable ingredient of the Green-
Schwarz formulation in which the kinetic term is made of only bosonic current bilinears,
and it is necessary to remove unphysical fermionic degrees of freedom. There is an in-
teresting observation [[] that the r symmetric AdS strings are integrable and dual field
theories are at conformal fixed points. In this paper we also require the k£ symmetry and
we construct a worldsheet action for a “heterotic” string in AdS space as a WZNW model.

The bosonic string in AdS3 space was analyzed by the SL(2) WZNW model [L(] where
chiral right/left separation makes the quantum analysis possible. In this paper we extend
this AdS3 bosonic string to an AdSs “heterotic” string. The chiral right/left separation of
an abelian o model is resulted from the current conservation;

9, T, =0, 0,J" =0 — 0,J =0=0_J, . (1.1)

For a non-abelian target space the flatness condition contains the structure constant depen-
dent term. In order to obtain the chiral current conservation the Wess-Zumino (WZ) term
is added in such a way that it gives an extra contribution to the current conservation [[LT];

Oy + Ty d) =0, Ou(JF+e"])=0 — 0, =0 . (1.2)

Anti-chiral current conservation may be constructed as d_.J, = 0 where J, must be a
different function from J,.

For a Green-Schwarz superstring another type of WZ term is required for the x sym-
metry [[J]. But this WZ term does not change the current conservation equation. For
example the superstring in the AdS5xS® space [, 3] there exist the non-abelian currents
satisfying the flatness condition and the current conservation

1
M Oudy+ Ju) =0, BTt =0 = By = —0.Jp=—SJyJ A0, (13)

which is the criteria of the integrable system [[[4]. The equations in ([.3), which is neither
(L) nor (L.F), do not give a chiral current conservation. The non-abelian bosonic WZ
term should be also necessary for the type of equations in ([.Z). It is denoted that the
currents J4 in ([[.3) are the right-invariant (RI) currents rather than the left-invariant (LI)
currents when the action is written in terms of the LI currents [[[J]. The supercovariant
derivatives, which are combination of the LI currents, are separated into two chiral sectors
on the constrained surface satisfying the same Poisson bracket as the one for the right /left
sectors in the flat case [IG, [[7]. The problem how to reflect the chiral separation of the LI
currents into the right/left separation of the RI currents will reduce to the problem of the
choice of a coordinate system and the gauge fixing. In this paper we construct the correct
WZ term which guarantees the x symmetry and gives chiral currents conservation as ([L.3)
for OSp(2|2) supergroup as a simplest nontrivial example.

The organization of this paper is the following: in section 2 we review the orthosym-
plectic supergroup and especially OSp(2|2) in detail which is used throughout this paper.
The group structure and parametrization related to the AdSs metric are presented. In



section 3 we propose a k symmetric OSp(2|2) WZNW action which will be an action for a
“heterotic” string in AdS3xS! space. The parity (Z, symmetry), the x symmetry and the
field equations of the action are examined. The k symmetry variation is quite analogous
to the AdS; superstring case [P, [[3], since the bosonic Sp(2) WZ term does not contribute
to the k transformation. The x symmetry gauge fixing is necessary to derive chiral right-
moving current conervation. This is familiar situation to the Green-Schwarz superstring in
flat space where the lightcone gauge is necessary for chiral separation to make the world-
sheet superconformal theory. The possible solution of the field equation is proposed. The
right-moving mode contains both bosons and fermions, but the left-moving mode contains
only bosons. In section 4 the flat limit of our action is examined. The current conservation
equations reduce into Klein-Gordon equations representing free right/left-moving bosons.
The k gauge fixing condition and the x symmetry equation reduce into a Dirac equation
representing free right-moving fermions.

2. OSp supergroup

We consider OSp(N|2) as the simplest supergroup containing SL(2, R) = Sp(2) which
could give a nontrivial WZ term. OSp(NV|2) is the 3-dimensional AdS group with N
supersymmetry or equally the 2-dimensional N superconformal group. For N=2 its bosonic
part is Sp(2) x SO(2) corresponding to AdS3xS! space and its fermionic part contains
four supersymmetries. In this section we present concrete parametrization of Sp(2) and
OSp(2|2). Although concrete parametrization is not necessary to examine the x symmetry
and field equations, it is necessary for a concrete expression of the action.

2.1 AdS;

In general an AdS, space is described by a coset SO(2,d — 1)/ SO(1,d — 1). But for d = 3
case the coset SO(2,2)/SO(1,2) reduces into SL(2) = Sp(2). We choose a Sp(2) group
element as

1 1
X=—nu— |1+ 2 | X = |1 2™, (2.1)
1— a2 m:ZO:,l,Z " 1—a2? m:ZO:,l,Z "

where the v matrix satisfies {7V, Vn} = 29mn with n,,, = diag.(—1,1,...,1). It is noted
that w,s is the Sp(2)-invariant metric. So 7o is not symmetric, but Yo w~g is symmetric.
The LI one form for Sp(2) is given by

1

X ldx =
1— 22

Z ~™ (dxm — emnlx"dxl) . (2.2)
m=0,1,2

The metric for AdSs space is obtained as

1 1 mn n
d82 — §tr(X_1dX)2 — m Z dzr™ <77mn 4 %) dx . (2.3)

m,n=0,1,2



If we generalize to d-dimension, this form of the metric is invariant under the finite SO(2, d—
1) 3 My, transformation with 7 = (5, m) = (4,0,1,...,d — 1) and omitting § index

Cm + Dp"x 5 A B"
S s L Vg . 2.4
Tm 7 A+ Bl (Cm Dmn) 29
A SO(2,d — 1) matrix, M, satisfies
(MY M = g = diag. (1,11, 1) (2.5)

and in components
—A?% 4 Cnn™Cp =-1
—_B™mpBn Dlm,r}lkan —_ nmn . (26)
—AB™ + Cyp™ D™ = 0

The coordinate x,, is a “projective coordinate” of the SO(2,d — 1) group realizing the AdS

symmetry group by the fractional linear transformation (.4) as discussed in [[J]. Therefore
the metric (2.3) has the 2-dimensional conformal group invariance which is SO(2,2).

2.2 OSp(N|M)

In this subsection the general properties of the orthosymplectic supergroup, OSp(N|M),
are presented introducing our notation. An OSp(N|M) group element, z, satisfies

(ZT)ABQBCZCD = QAD 5 QAB = QAB = (3 0) (27)
w
with A, B,...=(i,a) =(1,...,N, 1,...,M). It is denoted that w is an anti-symmetric

metric with w? = —1, so Q7Q = 1. The Lie algebra elements osp(N|M) > M4? satisfy
(MTYAQBP + QAC NP = ¢
Map=Ms“Qcp — Mijj=—Mj;, Mug=Mpsa, Mjo=My; (2.8)
The Lie algebra is given by
[Map, Mcp} = QpaMp)c) (2.9)

with a graded commutator; Opap) = Oap — (—)*POpa and [0,0'} = 00’ — (-9 00.
For a group element z the LI one form is given by L? = do#(L,) 4P = do#(2710,2) AP
and we use the following notation

Ly Lis

Lap=La“Qcp =
Lio Log

) with L;j = -Lj;, Log=Lga . (2.10)

They satisfy the following Maurer-Cartan equations:
e [au(LV)ij + (Lp)ir (L ) kj — (Lu)ia(Lv)jﬁwaﬁ} =0
e [aM(LV)aﬁ + (Lu)a’y(LV)éﬁww + (Lu)ia(LV)iﬁ}

& [O0u(LYia + (L) Lok = (Lyip (Lo )™

0 (2.11)

0



For the OSp(2|2) group indices run as i, j = 1,2 and «, 3 = 1,2 in the above equations.
Denoting M;; = €;;T, Mng = Pop and M;q = Qiq, its Lie algebra osp(2]2) is given by
[Pags Pys] = wisiaPay) {Qia, Qjpt = —0ij Pap + wagey T (2.12)
[Paps Qin] = —Qiawp)y [T, Qral = —€1jQja
The Maurer-Cartan equations for osp(2|2) are given by (R.11]) without the second term in
the first line because L;;Ly; — L2=0.
2.3 Left OSp(2|2) invariant one forms

In this section we give a concrete expression of the left OSp(2|2) invariant one forms. We use
linear parametrization for the OSp(2[2) matrix instead of familiar exponential parametriza-
tion [B]. There is an example of the linear parametrization of OSp supergroup [L§], but we
use different one as given below.

We parametrize OSp(2|2) group elements as

B I o\ [Y2 o Y 0
— 2.1
A <—w9T 1 0 a Y21 0 X (2.13)

where I's are 2x2 unit matrices. It is convenient to introduce Y;;’s as
Tij = 5ij + Hﬂwagejﬁ

_ 1
Tl = 6y — Eei%aﬁeﬁ

1
/2 _ 5.4 = po B
T ij (51] + 1+ \/592 wagej
1
T_1/2Z": i — ——=————0;"w, B
=% ey et

with Y";;6; = a™0;. Then the OSp condition, 2TQz=Q, leads to YTY =T and XTwX =
w, e Y € O(2) and X € Sp(2).
The inverse of z is given by

y-1 0 Y12 I -0
-1,B = . 2.1
o4 ( 0 X‘1>< 0 a_1/21> (wT I) (2.15)

The LI one forms, L4? = (27102) 45, are given by
L/ = (Y~loy),J

1

1 .
y1E 0~,w0) 0.7 "Wy + —————— 01,000, | Y

1

Laﬁ = (X_laX)aﬁ+X_la7 % (’Vm)»yé (mewaei) X(;ﬁ (2.16)
am:0,1,2

1
o _ —1~r—1/2 R
Lo = (voir >] 20" =X, (2.17)



with H[kw'ymel} = Q[ka(w’ym)aﬁel]ﬁ, Q[kwael} = Q[kawagael}ﬁ and waymae =
Qka(w’ym)agaekﬁ.

3. k symmetric OSp(2|2) WZNW action
We consider the following action for a supersymmetric string in the OSp(2|2) background
whose bosonic part is AdSzxS'. The criteria to construct an action are followings:

1. it has (pseudo) global OSp(2[2) invariance;
2. its bosonic Sp(2) part is the standard WZNW model;
3. the WZ term is closed, dH = 0;
4. it has generalized even parity, or equally Z, invariance;
5. it has k-symmetry invariance;
6. its field equation gives the chiral right-moving current conservation.
We propose the following action:
S = S0+ Swz
S0 = g [ EoVTRHS [(7102) s ]

1 5 )
Swz, = g/d?’aH

1
H = gLaﬁmewwéeLEd)wm — Li%LopLi® — Li"LijwasL? . (3.2)
The criteria 1-3 are guiding principles to determine the above form:

e criterion 1: the OSp(2|2) invariance is manifest up to total derivative caused from the
variation of the WZ term as usual, since this action is written in terms of the LI one
forms. Furthermore we also impose another global Sp(2) symmetry, Log — (97 Lg)ag
and L;, — (Lg)q for Sp(2) € g. This Sp(2) symmetry corresponds to a part of the
AdS3 isomentry and it is not expressed by “z — zg” type transformation. This
Sp(2) together with Sp(2) C OSp(2[2) forms SO(2,2), the AdS3 or the 2-dimensional
conformal group, discussed in the subsection 2.1.

e criterion 2: the bosonic Sp(2) part of the action is obtained by setting § = 0 and
Y = 1. The survived X dependence is just standard WZNW model

_)_L -1 2 E/ -1 3
S 2T/tr(X 0X)*+ ¢ [ (X 7lax)? . (3.3)

e criterion 3: the three form H is determined from the closure, dH = 0, using the
Maurer-Cartan equations in (B-I1)) for osp(2|2). It is also mentioned that H in (B.J)
can not be rewritten as Str(z~1dz)3.

We will show that the action (B.T]) and (B.9) satisfies the criteria 4-6 as below.



3.1 Z, invariance

A super-AdS group is a “generalized symmetric space” based on the supersymmetrized
parity, namely Z, symmetry, rather than an usual “symmetric space” [f]. The parity
operation is given by II(M) with IT1*(M) = M. The invariant subalgebra, II(M) = M, is
u(1)xu(1) which is denoted by Hg. The Z4 decomposition of the osp(2|2) algebra is given by

Ho = {T12, Pia + Pai}, Hi={q1 £ ¢}
Ho = {Pi1, P}, Hs = {d) + ¢} (3.4)

where we denoted Qo = (¢, ¢;) with ¢; = Qi1 and ¢} = Q2. Each subspace satisfies the
following algebra [Hy,, Hu| C Hyym (mod 4).

The H,, component of the LI currents is denoted by j,. The action (B.I]) and (B.9) is
expressed as

So ~ /dzU [jojo + jajo
Swz ~ /d30 Lo A (G2 A jo +J1 Aga) +Je A(J1 Ajr +Js AJs)] - (3.5)

All terms are of even parity or equivalently Z, invariant.

Our Z, classification (B.4) is not covariant under the other global Sp(2), which is part
of 3-dimensional AdS symmetry. In the original classification in [f] Ho coincides with H
for a coset G/H. On the other hand our space is not a coset space, so one might consider
an empty Ho. However one of the three sp(2) generators must be Hy in such a way that
the bosonic tri-linear term in the WZ action belongs to Ho; jo A j2 A jo ¢ Ho. We have
chosen P15y among sp(2) generators, P,g), as Ho.

In general the WZ term Lwyz has a surface term ambiguity. The OSp(2|2) invariance
and the Z,4 invariance restrict ambiguous terms to be a form of djy. A candidate term with
3-dimensional AdS symmetry is dLijeij = LiaLjﬁwgaeij . A surface term does not effect
the value of three form H, the field equation and the x gauge variation. The local WZ
term, which is a form of fermionic currents bilinears such as j; A j3, does not exist for this
system except the surface term Li“Ljﬁwmeij = dLZ-jeij . Therefore our WZ term is unique
up to this surface term ambiguity.

3.2 k¥ symmetry invariance

The system has “usual” Virasoro constraints, since the kinetic term of the action in (B.)
contains only bilinears of bosonic LI currents. In general the k symmetry variation of the
action is proportional to the Virasoro constraints so that it is cancelled by the variation
of the Virasoro multiplier. When the action is written in terms of the LI currents, the &
symmetry variation is a part of the local right transformation z — zA in such a way that
the parameter A carries the same indices with the LI currents. We will determine the s
symmetry transformation rules by cancellation between the z — zA variation of the action
and the Virasoro term.



The LI one form is transformed under z — zA as
Sa(2710,2)a% = 0 A4 + (2710,2) A AP — A4 (2710,2) 0P . (3.6)
For a fermionic parameter \;, the LI one form in components are transformed as

(03Lp)ij = —(L)iaw™Xjg + Niaw™ (L)) 8
(Ly)as = (Lp)iaris — Nia(Ly)is (3.7)
(5>\Lu)ia = au)\ia + (Lu)ij)‘ja + )‘iﬁwﬁw(Lu)“ﬂl

It is convenient to introduce v/ —hh*" = —e+(“e ¥). The variation of the kinetic term is
_ 21w, v of vé
01Lo = T—er e Niaw™ (L)5y (Lo)is = (Lu)ig(Lo)gs) - (3.8)
The k variation of the WZ term is given by
k
oLz = —es e MNiqw™ ()56 (Lo)is — (L)ig (L)) (3.9)

where e* = e [Fe_¥ /e is used.
We consider the variation dei” = pire * + @pi_e # and so de = (p_4 + pi_)e.
Under this variation (v/—hh*) is transformed as

(\/ h‘“’) = (<p++e (Le_¥) +<p__e+(“e+”)> , (3.10)
and the transformed Virasoro term is given by
1 1 14 v (e
0pL = 9T ¢ <<P++€ (e )+<P——€+(“€+ )) ((Lu)ij(Lu)ji - (Lu)aﬁ(Lu)ﬁ > (3.11)

with (L,)a® = w%(Ly)ay. In the prefactor e_(#e_*) and e;(#e;¥) form an orthogonal
basis.
The variation of the total Lagrangian is

1

oL = 2Te [(‘0++ {(L_)ij(L_)ji_(L—)aﬁ(L—)ﬁa}Jr‘P—— {(L-i-)ij(L-i-)ji_(L—i-)oaﬁ(L-i-)ﬁa}]

H{(Zr) P (2 8) P2 e - @iEs — () (T (312

with the projection operator P} = %ei”eﬁ’ = %(\/—hh’w + €M) and Ly = ex*Ly,. For a
case k = —%, the \;, parameter is determined from the x symmetry invariance as

No = PO ()i () = (Lp)a ()i} = ()ig (4 )jo = (L)a (4 )ig - (3.13)

The k symmetry invariance is obtained as

oL = (%wﬂ ¥ 2 ()i (L) zﬁ) {Es @y — o))
e { @y — (L) (L) } =0
& oy +de(h)iow™ (Ly)ig =9~ =0 . (3.14)



If a case kK = % is chosen instead of k = —%, then the k symmetry invari-

ance requires the \;, parameter to be Ao = (Li)ij(k-)ja — (L+)aﬁ("€—)iﬁ and
p—— +de(k-)iqw(L-)ig = 0= ¢y
0 A

The k transformation, 6z = z
’ —wAT 0o

), is expressed in components as

50;" = (Y2yAX~lal/?)e

= (027 (L)l o (L) (4 )y ) (X al2) ™

(XX, 7 =~ 3 (m)a” (Bw00) (3.15)
m=0,1,2
(6YY_1)ij = —€y <mwkwek1501) + m(efymwée)(emmwekl@l)> s

where spinor indices are omitted; for example 07wl = Gio‘(ymw)(wé@iﬁ . If we use the
parametrization (B.J) and Y = ¢'™Y, then the left hand sides of the bosonic equation are
given by (5XX_1)(15 = Z(vm)aﬁ ox™ (nnm — enmlxl) / (1 — xz) and (5YY_1)Z-j = €0y .
The Virasoro constraints and the x symmetry equation are obtained by field equations,
dL/0p =0 and 6L/ = 0:
(L )ij (L )ji — (L)a’ (L) =0, (Lo)y(Lo)ji — (Lo)a”(Lo)® = 0 (3.16)
2
(5 {2 ot @ ()}
2
+ (2= @ Eiat B i} =0
Since we have chosen k = —2/T', the k symmetry equation is reduced to
(Lo)ij (Lt )ja + (Lo)a’(Ly)ig =0 (3.17)

These equations are written in terms of LI currents and they are local equations.

3.3 Chiral current conservations

Now let us compute the chiral current conservations. It was shown that the conserved
Noether currents reflecting the global symmetry are RI currents, while the supercovariant
derivatives and local constraints are made of LI currents [, [[7]. So we need to consider the
infinitesimal variation 6zz~! which carries the same indices with the RI currents in order to
evaluate the current conservations. Under this variation the LI one form is transformed as

§ (2710u2) = 2710, (6227 )2 . (3.18)
The three form is transformed as

6H = Str [’ (z_lap(5zz_1)z) (z_lﬁuz)(z_lﬁ,,z)]
= €9, Str [6zz7" 9, {(0y2)2""}] (3.19)



where the explicit expression of the supertrace is given by
ePHV Str (z_lap(ézz_l)z) (2710,2)(2710,2)
= e (2719,(62271)2) , B(2710u2) 5% (2700 2) (1) 4
= M (2710,(6227)2) , P (L) o Q7Y (L) e ar M (- 1)
= e [(27105(02271)2)  { ~ (E)jow™ (L) }
+ (27'0,(82271)2) P {—(Lu) 516" (Ly)se + (L) gLie} W

se T ( 7
+2 (2719,(62271)2) .{(Lu)jk(L,,)k(;—(Lu)jgwm(LV),Y(;}QJM}.(?)QO)

aj

A

The variation of the kinetic term is given by
1 _ _ _
550 = T V —hh“”Str [(Z lauz) ’bosonic part (Z 181/(622 1)2) ‘bosonic part]

= %\/—hh’“’Str [8“(52,2_1) {8,,,2,2_1 —z ( y L,,) QTz_l}] ,

LT o
and the variation of the WZ term is given by
0Lwz = —ge‘“’Strau(ézz_l)(&,zz_l) . (3.21)
Total variation is written as
6L = {<% — g) P+ <% + g) Pﬁ”} Str [0,(62271) (Byz2™1)]

—%(Piy + PHIStr |9,(62271) 2 ( 0 LV) QT2_1] =0 . (3.22)

T
L, 0O
We consider a case k = —2/T. If the fermionic one form contribution in the second
line is absent, the variation (B.29) reduces into the 94 (0_z271') = 0 in the conformal

gauge, P_’i” = (n" 4 ") /2. The second line contribution is caused from the x symmetry
invariance, and at the same time the x symmetry constraint ambiguity also exists. In this
paper we find the x gauge fixing in which the chiral current conservation becomes manifest.

We take the lightcone gauge v # 0 for the bosonic LI current (L_)agwﬁ'y _ . qt) . Using
S

(=

the x gauge symmetry in (B.15) as 00;1 = v(k4 )i + -+ -, we take the following gauge for
the fermionic current as

(Ly)in =0 . (3.23)
. 00 0i1 . .
We could take the usual lightcone gauge 10 0 = 0 or equivalently #;1 = 0 which
i2

is similar to the temporal gauge. But we rather choose the gauge condition containing a
derivative in (B.23) which may be similar to the Lorentz gauge. In this gauge the equation

— 10 —



for the x symmetry (B.17) is solved as (L );2 = 0. This together with the equation (B.23)
reduces into

(Li)ia =0 . (3.24)

This equation corresponds to the one for a free right-moving fermion in a flat limit as we
will see in the next subsection. Using the condition (B:24) the field equation is obtained

from (B.29) as

0 L_

Op(J)aB =0, (Jo)aP=0_2271-1z <LT 0 ) Oz~ =(D_z)z=' . (3.25)

It seems that the second term of J_ is typical contribution caused from the x symmetry
as seen in the case of the AdS5xS® superstring [14, [, 7).

We propose a solution of the equations (B.24) and (B-29) as
z=Zy(z,y,0; a‘)Z(Jr) (x,y; 07) , oF=0+7 (3.26)

where Z(_y is a function of both bosonic and fermionic right-moving coordinates while Z(+)
is a function of only bosonic left-moving coordinates such as

Ziy (o) = <Y<+)éa+) X(+)0(0+)> , (3.27)

It is straightforward to check the equation for the right-moving currents given in (B.23) as
follows. The first term of the right-moving currents (B.25) is

-1 —1
0_zz = G_Z(_)Z(_) (328)
The LI one forms are given by
_ -1
L_ = 0_z = Z( )Z( )8 Zy (+
1 -1 8
) <(+)Z( Vo2 Yi) T (Y Z000-20) X)), 529)
p .

(XchZ20-20 ) 7 (XZ@ZH))

«

So the second term of the left-moving currents (B.25) is calculated as

1 —1
_z,(Y» D 0 Y0 Z00-2Xwn (Yo O 71
O\ o xy )\ x iz o-z v, 0 0 X7} )76

— 11 —



Therefore the right-moving current, satisfying 0,J_ = 0, is given as
(J)a® = (D_z)z™"

Z(‘_l) . (3.31)

-1
0 Z o 7, )

1
_Zy— =7 =)
0-Z(-) = 52+ < 73020, 0

The left-moving current, satisfying d_J, = 0, is given by

(J1)a® = 2710,z

. . Y 1o, 0
=271 9,2, = | DT (3.32)
e ( 0 X X

which contains only bosonic components without fermionic coordinate contribution.

4. Flat limit

In the flat limit the AdS3xS! space becomes 3-dimensional Minkowski x 1-dimensional
Euclidean space. It is obtained by the following rescaling

2™ — 2™/R, y — y/R, 0 —0/vVR
Los — Lag/R, Li; — Li;/R, Lio — Lia/VR (4.1)

and taking R — oo limit. The LI currents become
m m 1 a/.m B
(Lp)™ = Opa™ + 592' (Y"w)ap0ubi

1 (7
(L))" = Oy + 50s WageijOp0;” (4.2)
(L) = 0,0,

with (Ly)ag = (Ymw)as(L)™ and (L,)i; = €;(L,)Y. The action in (B.]) and (B.9), which
is rescaled as S — S/R?, becomes

S = So+ Swz
%:_%/fmcmwmwmum+@ﬁﬂwﬂ (4.3)
Swz = g / dPo [—LﬂLm(’me)aﬁLiﬁ — Li*L¥ej;waL;” }

The bosonic tri-linear term disappears from the WZ term. The lack of the four fermi terms
in the WZ term is due to the 4-dimensional N=1 chiral spinor property: This system has
the following cyclic identity for the spinors, x;%, (¢):%, (¢?);“ and (¢%);%,

D123 eyctic L(Ximmwdijd';) (0P kymwind®l) + (xiweijo'j) (*kwend®)] =0 (4.5)
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where the Sp(2) spinor indices are contracted as Yiymwdij(é1); = Xi%(Ymw)asdi;j (¢1);°
for example. After supplying v-matrices and restructuring the spinor indices, this will be
rewritten as a 4-dimensional covariant cyclic identity.

The global supersymmetry of the LI currents (f.9) is in a familiar form

1 1
00, =&, 6a™ = —gaia(ymw)aﬁeﬁ, dy = —iaio‘wageiﬂjﬁ . (4.6)

The kinetic term ([£3) is manifestly invariant and the WZ term (f.4) is pseudo invariant
under this supersymmetry as usual.
The k symmetry transformations of the action ([[.) and ([L4) for k = —2/T are given

by

00;% = —(L-)Yeij(r4);% — (Lo)" (k)i (ym)5®

1 1
5f”:—5@%¢%¢wwﬁ, 5y:—§wawﬁﬁ@ﬁ (4.7)
oV —hh*" = 48+9iawa5(/<;+)i5 e_he_ V)

The Virasoro constraints, field equations for bosons and the x symmetry equation are

given as
(L) (L ) + (L4 )Y (L)Y =0, (L) (L), + (L)Y (L)Y =
2 k‘
2 - pw ga 8\ _
Oy (T hh*" (L,)™ 26 05 (" w)ap0,b; >
2 W Yy k pv B
Oy T V—hh* (L,)Y + € 0 wapeij0,0;° | =
Ly P+ =—= | P ﬂL) (Ym@) a0 0i” + (L)Y wagei 95}:0
T 2 W mW%)ag aftijtvly
For a case k = —% the x symmetry equation in ([L§) is
(L_)m(ym)(ﬁ&r@w + (L_)yeij8+9ja =0 . (4.9)

Now we take the following gauge: The condition for the bosonic current is
(L_)™(ym)12 = —v # 0. The condition for the fermionic current is (Ly);1 = 046, = 0
using the k symmetry degree of freedom 66;; = v(k4 )2 + ---. Our gauge condition in the
flat limit is necessary condition for the conventional lightcone gauge as

xo + x1 = vT + const. <28> (gg) =0 . (4.10)

The k equation ([.9) leads to (Li)i2 = 04+60;2 = 0. This together with the gauge fixing
condition reduces into that the fermion coordinates satisfy the free right-moving Dirac
equation,

(L—i-)ia = 8+9ia =0 — Qia(O'_) . (411)
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The chiral right-moving current in (B.28), satisfying 0, (J_)a® = 0, is given by

B _ €i;0—y $0_0,° 419
Vam = <—%wa78_6ﬂ (Ym)aPO_a™ . (4.12)

The left-moving current j+ = 2710,z is given by

~ [ €04y 0
(J)aB = < y0+ (vm)aﬁmw’”) (4.13)

with the gauge 9,6 = 0. It satisfies 8_(j+) 48 = 0. The bosonic variables ™ and y satisfy
free Klein-Gordon equations for both right/left-moving modes

0,0_2"m =0=0,0_y — 2™ =2"(c")+2"(07), y=ylot)+ylc™) . (4.14)

Threfore our model in the flat limit is a 4-dimensional “heterotic” string with the N=1
supersymmetric right-moving sector and the bosonic left-moving sector.

The heterotic Green-Schwarz action in flat space is given by the sum of the usual type
I Green-Schwarz action plus the chiral current constraint term as shown in the original
paper [20]. On the other hand the chiral current conditions, (B.23) and (B.24), are result
of the k-symmetry gauge in our model. From the fact that our model keeps the chiral
structure after the flat limit, the k-symmetry may be essential for the chiral separation
rather than the non-abelian bosonic WZ term. Although the relation between different
treatments of the chiral condition is unclear at this stage, our model in the flat space limit
corresponds to the 4-dimensional part of the usual critical heterotic string in flat space.

5. Conclusion and discussions

We have proposed a x symmetric WZNW model for OSp(2|2) supergroup. The kinetic
term contains only bosonic current bilinears without fermionic current bilinear. The action
contains both the WZ term for the Sp(2) WZNW and the one for the Green-Schwarz
superstring. Then we have constructed the chiral non-abelian currents corresponding to
the equation ([.9) in the introduction. The non-abelian bosonic Wess-Zumino term does
not affect the x symmetry and x symmetry transformation rules are similar to the AdS
superstring case. It is essential that the k symmetry and the chiral current conservation are
consistent only for the same coefficient of the WZ term. We have chosen the lightcone gauge
(Laas.—)12 # 0 for bosonic coordinates and the x gauge (L );; = 0, then the fermionic
field equation gives (L4 );2 = 0 in this gauge. The s gauge condition, (L4 );; = 0, contains
derivative operator dy which corresponds to the Lorentz gauge rather than the temporal
gauge. It is a necessary condition for the usual lightcone gauge in the flat limit. This allows
us to derive the chiral right-moving currents for all osp(2|2) components. The right-moving
current, (J_)a? = (D_z)271, satisfying 0, (J_)a? = 0 is derived from the field equation as
(B-25). The left-moving current, (J,)4? = 2710, 2, satisfying d_(J, ) a® = 0 is obtained as
(B.32) from the factorization solution. The factorization is given as z = Z(_)(J_)Z( (o),
where Z_y is a function of both bosonic and fermionic right-moving coordinates z, y, 6
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while Z(+) is a function of only bosonic left-moving coordinate z, y. Therefore this model
describes a heterotic string propagating in the AdS3xS! space.

This system itself is not critical and it is expected to be embedded into some
larger system to describe critical string. We have obtained the right-moving current,
(J_)aB = (D_z)z7!, which is “right-invariant” (RI) reflecting the global OSp(2|2) in-
variance of the action. It was shown that the RI currents satisfy the Poisson bracket for
the AdS superalgebra [[J and the stress-energy tensor is given by the supertrace of the
square of the RI currents [I7] when the AdS superstring action is written in terms of the
LI currents. So it may be expected that the right-moving RI current constructs Sugawara
form giving the central charge cg = 0 because the dimension of 0sp(2|2) is zero. The
left-moving current has only bosonic parts giving the central charge ¢;, = 1 + % Since
the right-moving sector has the k-symmetry invariance in addition to the reparametriza-
tion invariance, the central charge has contributions from the reparametrization ghost and
the k-symmetry ghost whose contribution is unknown so far. If a (chiral) superstring
in curved space with the x symmetry exists, there will exist a critial theory with the s
ghost. Our model may also describe type II string with right/left asymmetry, so that it
consistently describes AdSzxS! part embedded into some larger critical system such as
AdS3xT*xS3(=AdS3xS!xT3xS3). It is interesting to find more systems into which our
model can be embedded, and supergravity solutions corresponding to them.
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