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1. Introduction

Superstrings in anti-de Sitter (AdS) spaces have important feature that those have con-

formal field theory duals. Recently it has been discussed that the heterotic string theory

in AdS3 space has the dual heterotic nonlinear superconformal algebras [1]. There are

many studies on the AdS/CFT correspondence for the type II superstring theories whose

worldsheet actions are known such as the σ models given in [2]. The pp-wave limit of

the worldsheet type II superstring action allows the lightcone quantization [3]. Further

generalization [4] leads to the integrable property of the system which became one of the

guiding principles to explore the AdS/CFT correspondence. On the other hand few studies

on the ones for a heterotic string have been done where an worldsheet action of a heterotic

string in AdS space is not known so far.

The heterotic string is a combination of a chiral bosonic string and a chiral superstring.

A chiral superstring in flat space is well described by the Neveu-Schwarz-Ramond formu-

lation, but it is difficult to describe spacetime supersymmetry in curved space because of

the lack of the spacetime fermions. A superstring in curved space is well described by the

Green-Schwarz formulation, but it is difficult to separate chiral right/left-moving modes

for the worldsheet superconformal theory. There are several formulations of a chiral super-

string in AdS space where chiral spacetime fermions make both spacetime supersymmetry

and right/left separation manifest from the beginning such as the supergroup covariant σ

models [5 – 8]. In these formulations the existence of the kinetic term for those fermions
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avoids the κ symmetry, and the worldsheet conformal field theory technique is available

for the quantum computation. The κ symmetry is an inevitable ingredient of the Green-

Schwarz formulation in which the kinetic term is made of only bosonic current bilinears,

and it is necessary to remove unphysical fermionic degrees of freedom. There is an in-

teresting observation [9] that the κ symmetric AdS strings are integrable and dual field

theories are at conformal fixed points. In this paper we also require the κ symmetry and

we construct a worldsheet action for a “heterotic” string in AdS space as a WZNW model.

The bosonic string in AdS3 space was analyzed by the SL(2) WZNW model [10] where

chiral right/left separation makes the quantum analysis possible. In this paper we extend

this AdS3 bosonic string to an AdS3 “heterotic” string. The chiral right/left separation of

an abelian σ model is resulted from the current conservation;

ǫµν∂µJν = 0 , ∂µJµ = 0 → ∂+J− = 0 = ∂−J+ . (1.1)

For a non-abelian target space the flatness condition contains the structure constant depen-

dent term. In order to obtain the chiral current conservation the Wess-Zumino (WZ) term

is added in such a way that it gives an extra contribution to the current conservation [11];

ǫµν(∂µJν + JµJν) = 0 , ∂µ(Jµ + ǫµνJν) = 0 → ∂+J− = 0 . (1.2)

Anti-chiral current conservation may be constructed as ∂−J̃+ = 0 where J̃+ must be a

different function from J+.

For a Green-Schwarz superstring another type of WZ term is required for the κ sym-

metry [12]. But this WZ term does not change the current conservation equation. For

example the superstring in the AdS5×S5 space [2, 13] there exist the non-abelian currents

satisfying the flatness condition and the current conservation

ǫµν(∂µJν + JµJν) = 0 , ∂µJµ = 0 → ∂+J− = −∂−J+ = −1

2
J[+J−] 6= 0 , (1.3)

which is the criteria of the integrable system [14]. The equations in (1.3), which is neither

(1.1) nor (1.2), do not give a chiral current conservation. The non-abelian bosonic WZ

term should be also necessary for the type of equations in (1.2). It is denoted that the

currents J± in (1.3) are the right-invariant (RI) currents rather than the left-invariant (LI)

currents when the action is written in terms of the LI currents [15]. The supercovariant

derivatives, which are combination of the LI currents, are separated into two chiral sectors

on the constrained surface satisfying the same Poisson bracket as the one for the right/left

sectors in the flat case [16, 17]. The problem how to reflect the chiral separation of the LI

currents into the right/left separation of the RI currents will reduce to the problem of the

choice of a coordinate system and the gauge fixing. In this paper we construct the correct

WZ term which guarantees the κ symmetry and gives chiral currents conservation as (1.2)

for OSp(2|2) supergroup as a simplest nontrivial example.

The organization of this paper is the following: in section 2 we review the orthosym-

plectic supergroup and especially OSp(2|2) in detail which is used throughout this paper.

The group structure and parametrization related to the AdS3 metric are presented. In
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section 3 we propose a κ symmetric OSp(2|2) WZNW action which will be an action for a

“heterotic” string in AdS3×S1 space. The parity (Z4 symmetry), the κ symmetry and the

field equations of the action are examined. The κ symmetry variation is quite analogous

to the AdS5 superstring case [2, 13], since the bosonic Sp(2) WZ term does not contribute

to the κ transformation. The κ symmetry gauge fixing is necessary to derive chiral right-

moving current conervation. This is familiar situation to the Green-Schwarz superstring in

flat space where the lightcone gauge is necessary for chiral separation to make the world-

sheet superconformal theory. The possible solution of the field equation is proposed. The

right-moving mode contains both bosons and fermions, but the left-moving mode contains

only bosons. In section 4 the flat limit of our action is examined. The current conservation

equations reduce into Klein-Gordon equations representing free right/left-moving bosons.

The κ gauge fixing condition and the κ symmetry equation reduce into a Dirac equation

representing free right-moving fermions.

2. OSp supergroup

We consider OSp(N |2) as the simplest supergroup containing SL(2, R) = Sp(2) which

could give a nontrivial WZ term. OSp(N |2) is the 3-dimensional AdS group with N

supersymmetry or equally the 2-dimensional N superconformal group. For N=2 its bosonic

part is Sp(2) × SO(2) corresponding to AdS3×S1 space and its fermionic part contains

four supersymmetries. In this section we present concrete parametrization of Sp(2) and

OSp(2|2). Although concrete parametrization is not necessary to examine the κ symmetry

and field equations, it is necessary for a concrete expression of the action.

2.1 AdS3

In general an AdSd space is described by a coset SO(2, d − 1)/SO(1, d − 1). But for d = 3

case the coset SO(2, 2)/SO(1, 2) reduces into SL(2) = Sp(2). We choose a Sp(2) group

element as

X =
1√

1 − x2



I +
∑

m=0,1,2

xmγm



 , X−1 =
1√

1 − x2



I −
∑

m=0,1,2

xmγm



 (2.1)

where the γ matrix satisfies {γm, γn} = 2ηmn with ηmn = diag.(−1, 1, . . . , 1). It is noted

that ωαβ is the Sp(2)-invariant metric. So γα
β is not symmetric, but γα

γωγβ is symmetric.

The LI one form for Sp(2) is given by

X−1dX =
1

1 − x2

∑

m=0,1,2

γm
(

dxm − ǫmnlx
ndxl

)

. (2.2)

The metric for AdS3 space is obtained as

ds2 =
1

2
tr(X−1dX)2 =

1

1 − x2

∑

m,n=0,1,2

dxm

(

ηmn +
xmxn

1 − x2

)

dxn . (2.3)
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If we generalize to d-dimension, this form of the metric is invariant under the finite SO(2, d−
1) ∋ Mm̂n̂ transformation with m̂ = (♮,m) = (♮, 0, 1, . . . , d − 1) and omitting ♮ index

xm → x′
m =

Cm + Dm
nxn

A + Blxl
, Mm̂

n̂ =

(

A Bn

Cm Dm
n

)

. (2.4)

A SO(2, d − 1) matrix, Mm̂
n̂, satisfies

(MT )m̂n̂ηn̂l̂Ml̂
k̂ = ηm̂k̂ , ηm̂n̂ = diag.(−1,−1, 1, . . . , 1) (2.5)

and in components










−A2 + CmηmnCn = −1

−BmBn + Dl
mηlkDk

n = ηmn

−ABm + CnηnlDl
m = 0

. (2.6)

The coordinate xm is a “projective coordinate” of the SO(2, d−1) group realizing the AdS

symmetry group by the fractional linear transformation (2.4) as discussed in [19]. Therefore

the metric (2.3) has the 2-dimensional conformal group invariance which is SO(2, 2).

2.2 OSp(N |M)

In this subsection the general properties of the orthosymplectic supergroup, OSp(N |M),

are presented introducing our notation. An OSp(N |M) group element, z, satisfies

(zT )ABΩBCzC
D = ΩAD , ΩAB = ΩAB =

(

1 0

0 ω

)

(2.7)

with A,B, . . . = (i, α) = (1, . . . , N, 1, . . . ,M). It is denoted that ω is an anti-symmetric

metric with ω2 = −1, so ΩT Ω = 1. The Lie algebra elements osp(N |M) ∋ MA
B satisfy

(MT )ABΩBD + ΩACMC
D = 0

MAB≡MA
CΩCB → Mij =−Mji , Mαβ = Mβα , Miα =Mαi. (2.8)

The Lie algebra is given by

[MAB ,MCD} = Ω[D|[AMB)|C) (2.9)

with a graded commutator; O[AB) = OAB − (−)ABOBA and [O,O′} = OO′ − (−)OO′O′O.

For a group element z the LI one form is given by LA
B = dσµ(Lµ)A

B = dσµ(z−1∂µz)A
B

and we use the following notation

LAB ≡ LA
CΩCB =

(

Lij Liβ

Ljα Lαβ

)

with Lij = −Lji , Lαβ = Lβα . (2.10)

They satisfy the following Maurer-Cartan equations:

ǫµν
[

∂µ(Lν)ij + (Lµ)ik(Lν)kj − (Lµ)iα(Lν)jβωαβ
]

= 0

ǫµν
[

∂µ(Lν)αβ + (Lµ)αγ(Lν)δβωγδ + (Lµ)iα(Lν)iβ

]

= 0 (2.11)

ǫµν
[

∂µ(Lν)iα + (Lµ)ik(Lν)kα − (Lµ)iβ(Lν)γαωβγ
]

= 0 .
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For the OSp(2|2) group indices run as i, j = 1, 2 and α, β = 1, 2 in the above equations.

Denoting Mij = ǫijT , Mαβ = Pαβ and Miα = Qiα, its Lie algebra osp(2|2) is given by

[Pαβ , Pγδ ] = ω(δ|(αPβ)|γ) , {Qiα, Qjβ} = −δijPαβ + ωαβǫijT (2.12)

[Pαβ, Qiγ ] = −Qi(αωβ)γ , [T,Qkα] = −ǫkjQjα .

The Maurer-Cartan equations for osp(2|2) are given by (2.11) without the second term in

the first line because LikLkj → L2 = 0.

2.3 Left OSp(2|2) invariant one forms

In this section we give a concrete expression of the left OSp(2|2) invariant one forms. We use

linear parametrization for the OSp(2|2) matrix instead of familiar exponential parametriza-

tion [2]. There is an example of the linear parametrization of OSp supergroup [18], but we

use different one as given below.

We parametrize OSp(2|2) group elements as

zA
B =

(

I θ

−ωθT I

)(

Υ−1/2 0

0 a−1/2I

)(

Y 0

0 X

)

(2.13)

where I’s are 2×2 unit matrices. It is convenient to introduce Υij’s as

Υij = δij + θi
αωαβθj

β

Υ−1
ij = δij −

1

a
θi

αωαβθj
β

Υ1/2
ij = δij +

1

1 +
√

a
θi

αωαβθj
β

Υ−1/2
ij = δij −

1√
a(1 +

√
a)

θi
αωαβθj

β

a = 1 − 1

2
θi

αωαβθi
β (2.14)

with Υn
ijθj = anθi. Then the OSp condition, zT Ωz = Ω, leads to Y T Y = I and XT ωX =

ω, i.e. Y ∈ O(2) and X ∈ Sp(2).

The inverse of z is given by

z−1
A

B =

(

Y −1 0

0 X−1

)(

Υ−1/2 0

0 a−1/2I

)(

I −θ

ωθT I

)

. (2.15)

The LI one forms, LA
B = (z−1∂z)A

B, are given by

Li
j =

(

Y −1∂Y
)

i
j

+Y −1
i
k





1

4a(1 +
√

a)2

∑

m=0,1,2

(θγmω∂θ) θ[kγ
mωθl] +

1√
a(1 +

√
a)

θ[kω∂θl]



Yl
j

Lα
β = (X−1∂X)α

β + X−1
α

γ





1

2a

∑

m=0,1,2

(γm)γ
δ (θiγ

mω∂θi)



Xδ
β (2.16)

Li
α =

(

Y −1Υ−1/2
)

ij
∂θj

γ 1√
a
Xγ

α (2.17)
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with θ[kωγmθl] = θ[k
α(ωγm)αβθl]

β, θ[kω∂θl] = θ[k
αωαβ∂θl]

β and θωγm∂θ =

θk
α(ωγm)αβ∂θk

β.

3. κ symmetric OSp(2|2) WZNW action

We consider the following action for a supersymmetric string in the OSp(2|2) background

whose bosonic part is AdS3×S1. The criteria to construct an action are followings:

1. it has (pseudo) global OSp(2|2) invariance;

2. its bosonic Sp(2) part is the standard WZNW model;

3. the WZ term is closed, dH = 0;

4. it has generalized even parity, or equally Z4 invariance;

5. it has κ-symmetry invariance;

6. its field equation gives the chiral right-moving current conservation.

We propose the following action:

S = S0 + SWZ

S0 =
1

2T

∫

d2σ
√
−hhµνStr

[

(z−1∂z) |bosonic part

]2

=
1

2T

∫

d2σ
√
−hhµν

[

(Lµ)ji(Lν)ij − (Lµ)αβωβγ(Lν)γδω
δα
]

(3.1)

SWZ =
k

2

∫

d3σH

H =
1

3
LαβωβγLγδω

δǫLǫφωφα − Li
αLαβLi

β − Li
αLijωαβLj

β . (3.2)

The criteria 1-3 are guiding principles to determine the above form:

• criterion 1: the OSp(2|2) invariance is manifest up to total derivative caused from the

variation of the WZ term as usual, since this action is written in terms of the LI one

forms. Furthermore we also impose another global Sp(2) symmetry, Lαβ → (gT Lg)αβ

and Liα → (Lg)iα for Sp(2) ∈ g. This Sp(2) symmetry corresponds to a part of the

AdS3 isomentry and it is not expressed by “z → zg” type transformation. This

Sp(2) together with Sp(2) ⊂ OSp(2|2) forms SO(2, 2), the AdS3 or the 2-dimensional

conformal group, discussed in the subsection 2.1.

• criterion 2: the bosonic Sp(2) part of the action is obtained by setting θ = 0 and

Y = I. The survived X dependence is just standard WZNW model

S → − 1

2T

∫

tr(X−1∂X)2 +
k

6

∫

tr(X−1dX)3 . (3.3)

• criterion 3: the three form H is determined from the closure, dH = 0, using the

Maurer-Cartan equations in (2.11) for osp(2|2). It is also mentioned that H in (3.2)

can not be rewritten as Str(z−1dz)3.

We will show that the action (3.1) and (3.2) satisfies the criteria 4-6 as below.

– 6 –
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3.1 Z4 invariance

A super-AdS group is a “generalized symmetric space” based on the supersymmetrized

parity, namely Z4 symmetry, rather than an usual “symmetric space” [6]. The parity

operation is given by Π(M) with Π4(M) = M . The invariant subalgebra, Π(M) = M , is

u(1)×u(1) which is denoted by H0. The Z4 decomposition of the osp(2|2) algebra is given by

H0 = {T12, P12 + P21} , H1 = {q1 ± q2}
H2 = {P11, P22} , H3 =

{

q′1 ± q′2
}

(3.4)

where we denoted Qiα = (qi, q′i) with qi = Qi1 and q′i = Qi2. Each subspace satisfies the

following algebra [Hn,Hm] ⊂ Hn+m (mod 4).

The Hn component of the LI currents is denoted by jn. The action (3.1) and (3.2) is

expressed as

S0 ∼
∫

d2σ [j0j0 + j2j2]

SWZ ∼
∫

d3σ [j0 ∧ (j2 ∧ j2 + j1 ∧ j3) + j2 ∧ (j1 ∧ j1 + j3 ∧ j3)] . (3.5)

All terms are of even parity or equivalently Z4 invariant.

Our Z4 classification (3.4) is not covariant under the other global Sp(2), which is part

of 3-dimensional AdS symmetry. In the original classification in [6] H0 coincides with H

for a coset G/H. On the other hand our space is not a coset space, so one might consider

an empty H0. However one of the three sp(2) generators must be H0 in such a way that

the bosonic tri-linear term in the WZ action belongs to H0; j2 ∧ j2 ∧ j2 /∈ H0. We have

chosen P(12) among sp(2) generators, P(αβ), as H0.

In general the WZ term LWZ has a surface term ambiguity. The OSp(2|2) invariance

and the Z4 invariance restrict ambiguous terms to be a form of dj0. A candidate term with

3-dimensional AdS symmetry is dLijǫ
ij = Li

αLj
βωβαǫij . A surface term does not effect

the value of three form H, the field equation and the κ gauge variation. The local WZ

term, which is a form of fermionic currents bilinears such as j1 ∧ j3, does not exist for this

system except the surface term Li
αLj

βωβαǫij = dLijǫ
ij. Therefore our WZ term is unique

up to this surface term ambiguity.

3.2 κ symmetry invariance

The system has “usual” Virasoro constraints, since the kinetic term of the action in (3.1)

contains only bilinears of bosonic LI currents. In general the κ symmetry variation of the

action is proportional to the Virasoro constraints so that it is cancelled by the variation

of the Virasoro multiplier. When the action is written in terms of the LI currents, the κ

symmetry variation is a part of the local right transformation z → zΛ in such a way that

the parameter Λ carries the same indices with the LI currents. We will determine the κ

symmetry transformation rules by cancellation between the z → zΛ variation of the action

and the Virasoro term.

– 7 –
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The LI one form is transformed under z → zΛ as

δΛ(z−1∂µz)A
B = ∂µΛA

B + (z−1∂µz)A
CΛC

B − ΛA
C(z−1∂µz)C

B . (3.6)

For a fermionic parameter λiα the LI one form in components are transformed as

(δλLµ)ij = −(Lµ)iαωαβλjβ + λiαωαβ(Lµ)jβ

(δλLµ)αβ = (Lµ)iαλiβ − λiα(Lµ)iβ (3.7)

(δλLµ)iα = ∂µλiα + (Lµ)ijλjα + λiβωβγ(Lµ)γα .

It is convenient to introduce
√
−hhµν = 1

ee+
(µe−

ν). The variation of the kinetic term is

δλL0 =
2

T

1

e
e+

(µe−
ν)λiαωαβ

(

(Lµ)βγωγδ(Lν)iδ − (Lµ)ij(Lν)jβ

)

. (3.8)

The κ variation of the WZ term is given by

δλLWZ =
k

e
e+

[µe−
ν]λiαωαβ

(

(Lµ)βγωγδ(Lν)iδ − (Lµ)ij(Lν)jβ

)

(3.9)

where ǫµν = e+
[µe−

ν]/e is used.

We consider the variation δe±
µ = ϕ±+e−

µ + ϕ±−e+
µ, and so δe = (ϕ−+ + ϕ+−)e.

Under this variation (
√
−hhµν) is transformed as

δϕ

(√
−hhµν

)

=
1

e

(

ϕ++e−
(µe−

ν) + ϕ−−e+
(µe+

ν)
)

, (3.10)

and the transformed Virasoro term is given by

δϕL =
1

2T

1

e

(

ϕ++e−
(µe−

ν) + ϕ−−e+
(µe+

ν)
)(

(Lµ)ij(Lν)ji − (Lµ)α
β(Lν)β

α
)

(3.11)

with (Lµ)α
β = ωβγ(Lµ)αγ . In the prefactor e−

(µe−
ν) and e+

(µe+
ν) form an orthogonal

basis.

The variation of the total Lagrangian is

δL =
1

2Te

[

ϕ++

{

(L−)ij(L−)ji−(L−)α
β(L−)β

α
}

+ϕ−−

{

(L+)ij(L+)ji−(L+)α
β(L+)β

α
}]

+

{(

2

T
+ k

)

Pµν
+ +

(

2

T
− k

)

Pµν
−

}

λiαωαβ {−(Lµ)ij(Lν)jβ − (Lµ)β
γ(Lν)iγ} (3.12)

with the projection operator Pµν
± ≡ 1

ee±
µe∓

ν = 1
2(
√
−hhµν ± ǫµν) and L± = e±

µLµ. For a

case k = − 2
T , the λiα parameter is determined from the κ symmetry invariance as

λiα = Pρλ
−

{

(Lρ)ij(κλ)jα − (Lρ)α
β(κλ)iβ

}

= (L−)ij(κ+)jα − (L−)α
β(κ+)iβ . (3.13)

The κ symmetry invariance is obtained as

δL =

(

1

2Te
ϕ++ +

2

T
(κ+)iαωαβ(L+)iβ

)

{

(L−)ij(L−)ji − (L−)α
β(L−)β

α
}

+
1

2Te
ϕ−−

{

(L+)ij(L+)ji − (L+)α
β(L+)β

α
}

= 0

⇔ ϕ++ + 4e(κ+)iαωαβ(L+)iβ = ϕ−− = 0 . (3.14)

– 8 –
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If a case k = 2
T is chosen instead of k = − 2

T , then the κ symmetry invari-

ance requires the λiα parameter to be λiα = (L+)ij(κ−)jα − (L+)α
β(κ−)iβ and

ϕ−− + 4e(κ−)iαωαβ(L−)iβ = 0 = ϕ++.

The κ transformation, δz = z

(

0 λ

−ωλT 0

)

, is expressed in components as

δθi
α = (Υ1/2Y λX−1a1/2)i

α

= (Υ1/2Y )i
j
(

(L−)jk(κ+)kβ + (L−)βγωγδ(κ+)jδ

)(

−ωX−1a1/2
)βα

(

δXX−1
)

α
β = − 1

2a

∑

m=0,1,2

(γm)α
β (θγmωδθ) (3.15)

(

δY Y −1
)

ij
= −ǫij

(

1√
a(1 +

√
a)

(θkωǫklδθl) +
1

4a(1 +
√

a)2
(θγmωδθ)(θkγmωǫklθl)

)

,

where spinor indices are omitted; for example θγmωδθ = θi
α(γmω)αβδθi

β. If we use the

parametrization (2.1) and Y = eiτ2y, then the left hand sides of the bosonic equation are

given by (δXX−1)α
β =

∑

(γm)α
β δxn

(

ηnm − ǫnmlx
l
)

/
(

1 − x2
)

and (δY Y −1)ij = ǫijδy .

The Virasoro constraints and the κ symmetry equation are obtained by field equations,

δL/δϕ = 0 and δL/δλ = 0:

(L+)ij(L+)ji − (L+)α
β(L+)β

α = 0, (L−)ij(L−)ji − (L−)α
β(L−)β

α = 0 (3.16)
(

2

T
+k

)

{

(L+)ij(L−)jα+(L+)α
β(L−)iβ

}

+

(

2

T
− k

)

{

(L−)ij(L+)jα+(L−)α
β(L+)iβ

}

= 0

Since we have chosen k = −2/T , the κ symmetry equation is reduced to

(L−)ij(L+)jα + (L−)α
β(L+)iβ = 0 . (3.17)

These equations are written in terms of LI currents and they are local equations.

3.3 Chiral current conservations

Now let us compute the chiral current conservations. It was shown that the conserved

Noether currents reflecting the global symmetry are RI currents, while the supercovariant

derivatives and local constraints are made of LI currents [15, 17]. So we need to consider the

infinitesimal variation δzz−1 which carries the same indices with the RI currents in order to

evaluate the current conservations. Under this variation the LI one form is transformed as

δ (z−1∂µz) = z−1∂µ(δzz−1)z . (3.18)

The three form is transformed as

δH = Str
[

ǫρµν
(

z−1∂ρ(δzz−1)z
)

(z−1∂µz)(z−1∂νz)
]

= ǫρµν∂ρ Str
[

δzz−1 ∂µ

{

(∂νz)z−1
}]

(3.19)

– 9 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
9

where the explicit expression of the supertrace is given by

ǫρµνStr
(

z−1∂ρ(δzz−1)z
)

(z−1∂µz)(z−1∂νz)

= ǫρµν
(

z−1∂ρ(δzz−1)z
)

A
B(z−1∂µz)B

C(z−1∂νz)C
A(−1)A

= ǫρµν
(

z−1∂ρ(δzz−1)z
)

A
B(Lµ)BC′ΩCC′

(Lν)CA′ΩAA′

(−1)A

= ǫρµν
[

(

z−1∂ρ(δzz−1)z
)

ij

{

−(Lµ)jαωαβ(Lν)iβ

}

+
(

z−1∂ρ(δzz−1)z
)

α
β
{

−(Lµ)βγωγδ(Lν)δǫ + (Lµ)iβLiǫ

}

ωǫα

+2
(

z−1∂ρ(δzz−1)z
)

αj

{

(Lµ)jk(Lν)kδ−(Lµ)jδω
βγ(Lν)γδ

}

ωδα
]

.(3.20)

The variation of the kinetic term is given by

δL0 =
1

T

√
−hhµνStr

[

(z−1∂µz) |bosonic part

(

z−1∂ν(δzz−1)z
)

|bosonic part

]

=
1

T

√
−hhµνStr

[

∂µ(δzz−1)

{

∂νzz−1 − z

(

0 Lν

LT
ν 0

)

ΩT z−1

}]

,

and the variation of the WZ term is given by

δLWZ = −k

2
ǫµνStr∂µ(δzz−1)(∂νzz−1) . (3.21)

Total variation is written as

δL =

{(

1

T
− k

2

)

Pµν
+ +

(

1

T
+

k

2

)

Pµν
−

}

Str
[

∂µ(δzz−1) (∂νzz−1)
]

− 1

T
(Pµν

+ + Pµν
− )Str

[

∂µ(δzz−1) z

(

0 Lν

LT
ν 0

)

ΩT z−1

]

= 0 . (3.22)

We consider a case k = −2/T . If the fermionic one form contribution in the second

line is absent, the variation (3.22) reduces into the ∂+(∂−zz−1) = 0 in the conformal

gauge, Pµν
+ = (ηµν + ǫµν)/2. The second line contribution is caused from the κ symmetry

invariance, and at the same time the κ symmetry constraint ambiguity also exists. In this

paper we find the κ gauge fixing in which the chiral current conservation becomes manifest.

We take the lightcone gauge v 6= 0 for the bosonic LI current (L−)αβωβγ =

(

u v

s t

)

. Using

the κ gauge symmetry in (3.15) as δθi1 = v(κ+)i2 + · · · , we take the following gauge for

the fermionic current as

(L+)i1 = 0 . (3.23)

We could take the usual lightcone gauge

(

0 0

1 0

)(

θi1

θi2

)

= 0 or equivalently θi1 = 0 which

is similar to the temporal gauge. But we rather choose the gauge condition containing a

derivative in (3.23) which may be similar to the Lorentz gauge. In this gauge the equation

– 10 –
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for the κ symmetry (3.17) is solved as (L+)i2 = 0. This together with the equation (3.23)

reduces into

(L+)iα = 0 . (3.24)

This equation corresponds to the one for a free right-moving fermion in a flat limit as we

will see in the next subsection. Using the condition (3.24) the field equation is obtained

from (3.22) as

∂+(J−)A
B = 0 , (J−)A

B = ∂−zz−1 − 1
2z

(

0 L−

LT
− 0

)

ΩT z−1 ≡ (D−z)z−1 . (3.25)

It seems that the second term of J− is typical contribution caused from the κ symmetry

as seen in the case of the AdS5×S5 superstring [14, 15, 17].

We propose a solution of the equations (3.24) and (3.25) as

z = Z(−)(x, y, θ; σ−)Z̃(+)(x, y; σ+) , σ± = σ ± τ (3.26)

where Z(−) is a function of both bosonic and fermionic right-moving coordinates while Z̃(+)

is a function of only bosonic left-moving coordinates such as

Z̃(+)(σ
+) =

(

Y(+)(σ
+) 0

0 X(+)(σ
+)

)

. (3.27)

It is straightforward to check the equation for the right-moving currents given in (3.25) as

follows. The first term of the right-moving currents (3.25) is

∂−zz−1 = ∂−Z(−)Z
−1
(−) . (3.28)

The LI one forms are given by

L− = z−1∂−z = Z̃−1
(+)Z

−1
(−)∂−Z(−)Z̃(+)

=





(

Y −1
(+)Z

−1
(−)∂−Z(−)Y(+)

)

i

j
(

Y −1
(+)Z

−1
(−)∂−Z(−)X(+)

)

i

β

(

X−1
(+)Z

−1
(−)∂−Z(−)Y(+)

)

α

j
(

X−1
(+)Z

−1
(−)∂−Z(−)X(+)

)

α

β



 . (3.29)

So the second term of the left-moving currents (3.25) is calculated as

z

(

0 L−

LT
− 0

)

ΩT z−1

= Z(−)

(

Y(+) 0

0 X(+)

)(

0 Y −1
(+)Z

−1
(−)∂−Z(−)X(+)

X−1
(+)Z

−1
(−)∂−Z(−)Y(+) 0

)(

Y −1
(+) 0

0 X−1
(+)

)

Z−1
(−)

= Z(−)

(

0 Z−1
(−)∂−Z(−)

Z−1
(−)∂−Z(−) 0

)

Z−1
(−) . (3.30)
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Therefore the right-moving current, satisfying ∂+J− = 0, is given as

(J−)A
B = (D−z)z−1

=

[

∂−Z(−) −
1

2
Z(−)

(

0 Z−1
(−)∂−Z(−)

Z−1
(−)∂−Z(−) 0

)]

Z−1
(−) . (3.31)

The left-moving current, satisfying ∂−J̃+ = 0, is given by

(J̃+)A
B = z−1∂+z

= Z̃−1
(+)∂+Z̃(+) =

(

Y −1
(+)∂+Y(+) 0

0 X−1
(+)∂+X(+)

)

(3.32)

which contains only bosonic components without fermionic coordinate contribution.

4. Flat limit

In the flat limit the AdS3×S1 space becomes 3-dimensional Minkowski × 1-dimensional

Euclidean space. It is obtained by the following rescaling

xm → xm/R, y → y/R, θ → θ/
√

R

Lαβ → Lαβ/R, Lij → Lij/R, Liα → Liα/
√

R (4.1)

and taking R → ∞ limit. The LI currents become

(Lµ)m = ∂µxm +
1

2
θi

α(γmω)αβ∂µθi
β

(Lµ)y = ∂µy +
1

2
θi

αωαβǫij∂µθj
β (4.2)

(Lµ)i
α = ∂µθi

α

with (Lµ)αβ = (γmω)αβ(Lµ)m and (Lµ)ij = ǫij(Lµ)y. The action in (3.1) and (3.2), which

is rescaled as S → S/R2, becomes

S = S0 + SWZ

S0 = − 1

T

∫

d2σ
√
−hhµν [(Lµ)m(Lν)m + (Lµ)y(Lν)y] (4.3)

SWZ =
k

2

∫

d3σ
[

−Li
αLm(γmω)αβLi

β − Li
αLyǫijωαβLj

β
]

=
k

2

∫

d2σǫµν
[

θi
α(γmω)αβ∂µθi

β ∂νx
m + θi

αωαβǫij∂µθj
β ∂νy

]

. (4.4)

The bosonic tri-linear term disappears from the WZ term. The lack of the four fermi terms

in the WZ term is due to the 4-dimensional N=1 chiral spinor property: This system has

the following cyclic identity for the spinors, χi
α, (φ1)i

α, (φ2)i
α and (φ3)i

α,

∑

1,2,3 cyclic

[(

χiγmωδijφ
1
j

) (

φ2
kγmωδklφ

3
l

)

+
(

χiωǫijφ
1
j

) (

φ2
kωǫklφ

3
l

)]

= 0 (4.5)

– 12 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
9

where the Sp(2) spinor indices are contracted as χiγmωδij(φ
1)j = χi

α(γmω)αβδij(φ
1)j

β

for example. After supplying γ-matrices and restructuring the spinor indices, this will be

rewritten as a 4-dimensional covariant cyclic identity.

The global supersymmetry of the LI currents (4.2) is in a familiar form

δθi
α = εi

α , δxm = −1

2
εi

α(γmω)αβθi
β , δy = −1

2
εi

αωαβǫijθj
β . (4.6)

The kinetic term (4.3) is manifestly invariant and the WZ term (4.4) is pseudo invariant

under this supersymmetry as usual.

The κ symmetry transformations of the action (4.3) and (4.4) for k = −2/T are given

by

δθi
α = −(L−)yǫij(κ+)j

α − (L−)m(κ+)i
β(γm)β

α

δxm = −1

2
θi

α(γmω)αβδθi
β , δy = −1

2
θi

αωαβǫijδθj
β (4.7)

δ
√
−hhµν = 4∂+θi

αωαβ(κ+)i
β e−

(µe−
ν) .

The Virasoro constraints, field equations for bosons and the κ symmetry equation are

given as

(L+)m(L+)m + (L+)y(L+)y = 0 , (L−)m(L−)m + (L−)y(L−)y = 0

∂µ

(

2

T

√
−hhµν(Lν)

m +
k

2
ǫµνθα

i (γmω)αβ∂νθi
β

)

= 0

∂µ

(

2

T

√
−hhµν(Lν)

y +
k

2
ǫµνθα

i ωαβǫij∂νθj
β

)

= 0

{(

1

T
+

k

2

)

Pµν
+ +

(

1

T
− k

2

)

Pµν
−

}

{

(Lµ)m(γmω)αβ∂νθi
β+(Lµ)yωαβǫij∂νθj

β
}

= 0 . (4.8)

For a case k = − 2
T the κ symmetry equation in (4.8) is

(L−)m(γm)α
β∂+θiβ + (L−)yǫij∂+θjα = 0 . (4.9)

Now we take the following gauge: The condition for the bosonic current is

(L−)m(γm)1
2 = −v 6= 0. The condition for the fermionic current is (L+)i1 = ∂+θi1 = 0

using the κ symmetry degree of freedom δθi1 = v(κ+)i2 + · · · . Our gauge condition in the

flat limit is necessary condition for the conventional lightcone gauge as

x0 + x1 = vτ + const. ,

(

0 0

1 0

)(

θi1

θi2

)

= 0 . (4.10)

The κ equation (4.9) leads to (L+)i2 = ∂+θi2 = 0. This together with the gauge fixing

condition reduces into that the fermion coordinates satisfy the free right-moving Dirac

equation,

(L+)iα = ∂+θiα = 0 → θiα(σ−) . (4.11)

– 13 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
9

The chiral right-moving current in (3.25), satisfying ∂+(J−)A
B = 0, is given by

(J−)A
B =

(

ǫij∂−y 1
2∂−θi

β

−1
2ωαγ∂−θj

γ (γm)α
β∂−xm

)

. (4.12)

The left-moving current J̃+ = z−1∂+z is given by

(J̃+)A
B =

(

ǫij∂+y 0

0 (γm)α
β∂+xm

)

(4.13)

with the gauge ∂+θ = 0. It satisfies ∂−(J̃+)A
B = 0. The bosonic variables xm and y satisfy

free Klein-Gordon equations for both right/left-moving modes

∂+∂−xm = 0 = ∂+∂−y → xm = xm(σ+) + xm(σ−) , y = y(σ+) + y(σ−) . (4.14)

Threfore our model in the flat limit is a 4-dimensional “heterotic” string with the N=1

supersymmetric right-moving sector and the bosonic left-moving sector.

The heterotic Green-Schwarz action in flat space is given by the sum of the usual type

I Green-Schwarz action plus the chiral current constraint term as shown in the original

paper [20]. On the other hand the chiral current conditions, (3.23) and (3.24), are result

of the κ-symmetry gauge in our model. From the fact that our model keeps the chiral

structure after the flat limit, the κ-symmetry may be essential for the chiral separation

rather than the non-abelian bosonic WZ term. Although the relation between different

treatments of the chiral condition is unclear at this stage, our model in the flat space limit

corresponds to the 4-dimensional part of the usual critical heterotic string in flat space.

5. Conclusion and discussions

We have proposed a κ symmetric WZNW model for OSp(2|2) supergroup. The kinetic

term contains only bosonic current bilinears without fermionic current bilinear. The action

contains both the WZ term for the Sp(2) WZNW and the one for the Green-Schwarz

superstring. Then we have constructed the chiral non-abelian currents corresponding to

the equation (1.2) in the introduction. The non-abelian bosonic Wess-Zumino term does

not affect the κ symmetry and κ symmetry transformation rules are similar to the AdS

superstring case. It is essential that the κ symmetry and the chiral current conservation are

consistent only for the same coefficient of the WZ term. We have chosen the lightcone gauge

(LAdS;−)1
2 6= 0 for bosonic coordinates and the κ gauge (L+)i1 = 0, then the fermionic

field equation gives (L+)i2 = 0 in this gauge. The κ gauge condition, (L+)i1 = 0, contains

derivative operator ∂+ which corresponds to the Lorentz gauge rather than the temporal

gauge. It is a necessary condition for the usual lightcone gauge in the flat limit. This allows

us to derive the chiral right-moving currents for all osp(2|2) components. The right-moving

current, (J−)A
B = (D−z)z−1, satisfying ∂+(J−)A

B = 0 is derived from the field equation as

(3.25). The left-moving current, (J̃+)A
B = z−1∂+z, satisfying ∂−(J̃+)A

B = 0 is obtained as

(3.32) from the factorization solution. The factorization is given as z = Z(−)(σ
−)Z̃(+)(σ

+),

where Z(−) is a function of both bosonic and fermionic right-moving coordinates x, y, θ

– 14 –
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while Z̃(+) is a function of only bosonic left-moving coordinate x, y. Therefore this model

describes a heterotic string propagating in the AdS3×S1 space.

This system itself is not critical and it is expected to be embedded into some

larger system to describe critical string. We have obtained the right-moving current,

(J−)A
B = (D−z)z−1, which is “right-invariant” (RI) reflecting the global OSp(2 |2) in-

variance of the action. It was shown that the RI currents satisfy the Poisson bracket for

the AdS superalgebra [15] and the stress-energy tensor is given by the supertrace of the

square of the RI currents [17] when the AdS superstring action is written in terms of the

LI currents. So it may be expected that the right-moving RI current constructs Sugawara

form giving the central charge cR = 0 because the dimension of osp(2|2) is zero. The

left-moving current has only bosonic parts giving the central charge cL = 1 + 3k
k−2 . Since

the right-moving sector has the κ-symmetry invariance in addition to the reparametriza-

tion invariance, the central charge has contributions from the reparametrization ghost and

the κ-symmetry ghost whose contribution is unknown so far. If a (chiral) superstring

in curved space with the κ symmetry exists, there will exist a critial theory with the κ

ghost. Our model may also describe type II string with right/left asymmetry, so that it

consistently describes AdS3×S1 part embedded into some larger critical system such as

AdS3×T4×S3(=AdS3×S1×T3×S3). It is interesting to find more systems into which our

model can be embedded, and supergravity solutions corresponding to them.
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